If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6w^2+5w-4=0
a = 6; b = 5; c = -4;
Δ = b2-4ac
Δ = 52-4·6·(-4)
Δ = 121
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{121}=11$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(5)-11}{2*6}=\frac{-16}{12} =-1+1/3 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(5)+11}{2*6}=\frac{6}{12} =1/2 $
| 13=2/3a-1 | | 6.3=2x−4.5 | | -5a+12+7a=9a-4a | | 0.6^x=7 | | 3x-9=2x-16 | | -10x=5x+4 | | x/4+4=4-8x | | -2t-(-8)=10-2t | | -2(5x-3)=-4x | | X-3/x-8=2/3 | | 9=4f | | 5(3y-1)13(2y)=19 | | 7(x+5)=5x-3 | | -8=a/7 | | -5/2x=-9/4x+5/6 | | 3=g4-9 | | 7+2(x+1)=2×+9 | | 10·w=90 | | -56=7s | | 4(k-2)=8k+16 | | 15=-3(24-m)+2(m-4) | | x/4-3/2=-1/2 | | 18g-20=1-g | | (x)128=-7 | | n/6=14/42 | | |b+9|=2 | | -3(w-7)=63 | | x÷2=56 | | r/7=-6 | | -4(x+17)=-56 | | -9=z-3 | | 3+9=-3(5x-4) |